GenAI는 전례 nonexistent으로 진화하고 있으며 생성형 AI의 기능은 매우 광범위합니다. GenAI는 상황(context)을 분명하게 이해하고, 인간과 매우 유사한 결과물을 만들어내는 것으로 알려져 있습니다. 이러한 가능성은 지능형 챗봇과의 대화를 포함하여 여러 산업을 획기적으로 변화시키고 보다 풍부한 사용자 경험을 제공할 수 있습니다. GenAI 기반 애플리케이션은 정보 검색과 텍스트 생성을 결합하여 진정한 의미의 개인화되고 상황(context)에 맞는 사용자 경험을 실시간으로 제공할 것입니다. 이러한 프로세스를 검색 증강 생성(Retrieval-Augmented Generation)이라고 부릅니다. GenAI의 세계와 그 데이터베이스 요구 사항에 대해 자세히 살펴보도록 하겠습니다. GenAI가 가진 주요 과제 중 하나는 프라이빗 또는 비공개 데이터에 액세스할 수 없다는 것입니다. GenAI 기반 모델은 일반적으로 공개적으로 이용 가능한 데이터를 기초로 훈련되지만, 기밀 또는 비공개 정보에는 액세스할 수 없으며 LLM도 여기에 포함됩니다. 데이터가 공개 영역에 있더라도, 오래되었거나 관련성이 낮을 수 있습니다. LLM도 가장 최근의 이벤트나 지식을 인식하는 데 한계가 있습니다.뿐만 아니라, 적합한 지침이 없다면, LLM은 부정확한 정보를 생성할 수 있으며, 이는 대부분 상황에서 받아들여질 수 없습니다. 데이터베이스는 이러한 과제를 해결하는 데 중요한 역할을 수행합니다. 애플리케이션은 LLM로 직접 프롬프트를 보내는 것이 아니라, 데이터베이스를 사용해 관련 데이터를 검색하고 이를 컨텍스트로서 프롬프트에 포함시킬 수 있습니다. 예를 들어, 뱅킹 애플리케이션은 레거시 데이터베이스에 사용자의 거래 데이터를 쿼리하고, 이를 프롬프트에 추가한 다음, 이 엔지니어링된 프롬프트를 LLM로 전달합니다. 이러한 접근 방식으로 LLM가 정확한 최신 응답을 생성하도록 보장함으로써 데이터 누락, 기간 만료된(stale) 데이터 및 부정확성 등과 같은 문제를 없앨 수 있습니다. GenAI 애플리케이션을 위한 주요 4가지 데이터베이스 고려 사항은 다음과 같습니다. 데이터베이스는 리치 표현식 쿼리와 보조 인덱스를 지원하여 실시간 상황 인식(context-aware) 사용자 경험을 제공할 수 있어야 합니다. 또한, 데이터베이스는 다양한 유형 및 포맷의 멀티 모달(multi-modal) 데이터를 다루기 위해 유연한 데이터 모델을 가지고 있어야 합니다. GenAI 애플리케이션은 free-form 텍스트, 오디오 또는 이미지 등 다양한 유형의 데이터에 대해 시맨틱(semantic) 또는 유사성(similarity) 쿼리를 실행해야 할 수도 있습니다. 또한, 데이터베이스는 통합 벡터 검색(Integrated vector search)을 제공하여 2개의 별도 시스템을 유지할 필요가 없습니다.Lastly, 데이터베이스는 증가하는 데이터 볼륨과 요청 처리율(request rates)을 지원하도록 동적으로 스케일 아웃(scale-out)할 수 있어야 합니다. 최적의 데이터베이스 솔루션은 MongoDB Atlas입니다. MongoDB Atlas는 GenAI의 고유한 요구 사항들을 처리할 수 있는 강력한 다목적 플랫폼입니다. MongoDB는 멀티 모달 데이터를 손쉽게 처리할 수 있도록 강력한 쿼리 API를 사용함으로써 개발자들이 작성하는 코드 수는 줄이면서 더 많은 작업을 수행할 수 있도록 합니다. MongoDB는 개발자들에게 가장 인기있는 도큐먼트 데이터베이스입니다. 도큐먼트가 객체 지향적인 프로그래밍 내에서 객체를 매핑하며, 이는 관계형 데이터베이스의 끝없는 행과 테이블보다 친숙하기 때문에 개발자들은 도큐먼트를 이용해 쉽고 직관적으로 작업할 수 있습니다. 유연한 스키마 설계를 통해 본질적으로 멀티 모달인 GenAI 활용 사례의 요구에 맞게 이러한 데이터 모델을 발전시킬 수 있습니다. Atlas는 샤딩(sharding)을 활용함으로써 GenAI 기반 애플리케이션에서 생성된 데이터와 요청의 급격한 증가를 지원하도록 스케일 아웃할 수 있습니다. MongoDB Atlas Vector Search는 기본적으로 벡터 검색 인덱싱 기능을 내장하고 있기 때문에 2개의 시스템을 유지할 필요가 없습니다. Atlas는 소스 데이터를 통해 Vector Search 인덱스가 지속적으로 업데이트되도록 합니다. 개발자들은 단일 엔드포인트와 쿼리 언어를 활용해 정규 데이터베이스 쿼리 필터와 벡터 검색 필터를 결합한 쿼리를 작성할 수 있습니다. 이를 통해 마찰을 없애고 개발자들이 신속하게 GenAI 솔루션의 프로토타입을 만들고 제공할 수 있는 환경을 제공합니다. 결론은 GenAI는 이제 곧 산업들을 변화시키고 산업 전반에서 혁신적인 솔루션을 제공하게 될 것입니다. 최적의 데이터베이스 솔루션을 활용하는 GenAI 애플리케이션들은 성공을 거두게 될 것이며, 오늘날 빠르게 변화하는 디지털 환경의 요구를 충족하는 정확하고, 상황을 인식하는 동적 데이터 기반 사용자 경험을 제공할 수 있을 것입니다. MongoDB Atlas가 어떻게 기업들이 GenAI와 LLM 데이터를 통합하고 운영할 수 있도록 돕는지를 자세히 알아보시려면, MongoDB의 백서, "MongoDB를 이용한 생성형 AI 및 고급 검색 기능을 앱에 임베딩하기(Embedding Generative AI and Advanced Search into your Apps with MongoDB)"를 다운로드하십시오. 귀사에서 생성형 AI를 활용하는 데 대해 관심이 있으시면, 지금 바로 연락 주십시오. MongoDB가 어떻게 귀사의 디지털 전환을 지원할 수 있는지 알려드릴 것입니다.